p-group, metabelian, nilpotent (class 3), monomial
Aliases: C24.25D4, C25.9C22, C24.171C23, C24⋊7(C2×C4), (C22×C4)⋊1D4, C22≀C2⋊4C4, C2.3C2≀C22, (C2×D4).75D4, C24⋊3C4⋊2C2, C22.38(C4×D4), C23⋊2(C22⋊C4), C23.564(C2×D4), C23.9D4⋊6C2, C22.11C24⋊2C2, C23.67(C22×C4), C22.103C22≀C2, C23.118(C4○D4), C22.45(C4⋊D4), (C22×D4).22C22, C2.28(C23.23D4), C22.52(C22.D4), C22⋊C4⋊5(C2×C4), (C2×C23⋊C4)⋊4C2, (C2×C4)⋊2(C22⋊C4), (C2×D4).78(C2×C4), (C2×C22≀C2).1C2, C22.44(C2×C22⋊C4), (C2×C22⋊C4).10C22, SmallGroup(128,621)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C25.C22
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=e2=g2=1, f2=d, faf-1=ab=ba, ac=ca, ad=da, ae=ea, gag=ace, bc=cb, bd=db, gbg=be=eb, bf=fb, cd=dc, fcf-1=ce=ec, cg=gc, gdg=de=ed, df=fd, ef=fe, eg=ge, gfg=cef >
Subgroups: 772 in 289 conjugacy classes, 56 normal (18 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, C23, C23, C23, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, C24, C24, C23⋊C4, C2×C22⋊C4, C2×C22⋊C4, C2×C22⋊C4, C42⋊C2, C4×D4, C22≀C2, C22≀C2, C22×D4, C22×D4, C25, C23.9D4, C24⋊3C4, C2×C23⋊C4, C22.11C24, C2×C22≀C2, C25.C22
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C4○D4, C2×C22⋊C4, C4×D4, C22≀C2, C4⋊D4, C22.D4, C23.23D4, C2≀C22, C25.C22
(6 12)(8 10)
(5 11)(6 12)(7 9)(8 10)
(2 14)(4 16)(5 11)(7 9)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)
(1 13)(2 14)(3 15)(4 16)(5 11)(6 12)(7 9)(8 10)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
(1 8)(2 11)(3 12)(4 7)(5 14)(6 15)(9 16)(10 13)
G:=sub<Sym(16)| (6,12)(8,10), (5,11)(6,12)(7,9)(8,10), (2,14)(4,16)(5,11)(7,9), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16), (1,13)(2,14)(3,15)(4,16)(5,11)(6,12)(7,9)(8,10), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,8)(2,11)(3,12)(4,7)(5,14)(6,15)(9,16)(10,13)>;
G:=Group( (6,12)(8,10), (5,11)(6,12)(7,9)(8,10), (2,14)(4,16)(5,11)(7,9), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16), (1,13)(2,14)(3,15)(4,16)(5,11)(6,12)(7,9)(8,10), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,8)(2,11)(3,12)(4,7)(5,14)(6,15)(9,16)(10,13) );
G=PermutationGroup([[(6,12),(8,10)], [(5,11),(6,12),(7,9),(8,10)], [(2,14),(4,16),(5,11),(7,9)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16)], [(1,13),(2,14),(3,15),(4,16),(5,11),(6,12),(7,9),(8,10)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)], [(1,8),(2,11),(3,12),(4,7),(5,14),(6,15),(9,16),(10,13)]])
G:=TransitiveGroup(16,208);
(1 6)(4 8)(9 11)(10 14)(12 16)(13 15)
(1 6)(2 5)(3 7)(4 8)(9 15)(10 16)(11 13)(12 14)
(1 4)(6 8)(10 12)(14 16)
(9 11)(10 12)(13 15)(14 16)
(1 4)(2 3)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)
(1 2)(3 4)(5 6)(7 8)(9 10 11 12)(13 14 15 16)
(1 16)(2 13)(3 15)(4 14)(5 9)(6 12)(7 11)(8 10)
G:=sub<Sym(16)| (1,6)(4,8)(9,11)(10,14)(12,16)(13,15), (1,6)(2,5)(3,7)(4,8)(9,15)(10,16)(11,13)(12,14), (1,4)(6,8)(10,12)(14,16), (9,11)(10,12)(13,15)(14,16), (1,4)(2,3)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16), (1,16)(2,13)(3,15)(4,14)(5,9)(6,12)(7,11)(8,10)>;
G:=Group( (1,6)(4,8)(9,11)(10,14)(12,16)(13,15), (1,6)(2,5)(3,7)(4,8)(9,15)(10,16)(11,13)(12,14), (1,4)(6,8)(10,12)(14,16), (9,11)(10,12)(13,15)(14,16), (1,4)(2,3)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16), (1,16)(2,13)(3,15)(4,14)(5,9)(6,12)(7,11)(8,10) );
G=PermutationGroup([[(1,6),(4,8),(9,11),(10,14),(12,16),(13,15)], [(1,6),(2,5),(3,7),(4,8),(9,15),(10,16),(11,13),(12,14)], [(1,4),(6,8),(10,12),(14,16)], [(9,11),(10,12),(13,15),(14,16)], [(1,4),(2,3),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16)], [(1,2),(3,4),(5,6),(7,8),(9,10,11,12),(13,14,15,16)], [(1,16),(2,13),(3,15),(4,14),(5,9),(6,12),(7,11),(8,10)]])
G:=TransitiveGroup(16,210);
(5 11)(6 8)(7 9)(10 12)
(5 9)(6 10)(7 11)(8 12)
(1 3)(2 16)(4 14)(5 7)(6 12)(8 10)(9 11)(13 15)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)
(1 13)(2 14)(3 15)(4 16)(5 9)(6 10)(7 11)(8 12)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
(1 12)(2 11)(3 6)(4 5)(7 14)(8 13)(9 16)(10 15)
G:=sub<Sym(16)| (5,11)(6,8)(7,9)(10,12), (5,9)(6,10)(7,11)(8,12), (1,3)(2,16)(4,14)(5,7)(6,12)(8,10)(9,11)(13,15), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16), (1,13)(2,14)(3,15)(4,16)(5,9)(6,10)(7,11)(8,12), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,12)(2,11)(3,6)(4,5)(7,14)(8,13)(9,16)(10,15)>;
G:=Group( (5,11)(6,8)(7,9)(10,12), (5,9)(6,10)(7,11)(8,12), (1,3)(2,16)(4,14)(5,7)(6,12)(8,10)(9,11)(13,15), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16), (1,13)(2,14)(3,15)(4,16)(5,9)(6,10)(7,11)(8,12), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,12)(2,11)(3,6)(4,5)(7,14)(8,13)(9,16)(10,15) );
G=PermutationGroup([[(5,11),(6,8),(7,9),(10,12)], [(5,9),(6,10),(7,11),(8,12)], [(1,3),(2,16),(4,14),(5,7),(6,12),(8,10),(9,11),(13,15)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16)], [(1,13),(2,14),(3,15),(4,16),(5,9),(6,10),(7,11),(8,12)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)], [(1,12),(2,11),(3,6),(4,5),(7,14),(8,13),(9,16),(10,15)]])
G:=TransitiveGroup(16,217);
(1 8)(2 14)(3 6)(4 16)(5 12)(7 10)(9 15)(11 13)
(1 11)(2 12)(3 9)(4 10)(5 14)(6 15)(7 16)(8 13)
(2 7)(4 5)(10 14)(12 16)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)
(1 6)(2 7)(3 8)(4 5)(9 13)(10 14)(11 15)(12 16)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
(1 9)(2 14)(3 15)(4 12)(5 16)(6 13)(7 10)(8 11)
G:=sub<Sym(16)| (1,8)(2,14)(3,6)(4,16)(5,12)(7,10)(9,15)(11,13), (1,11)(2,12)(3,9)(4,10)(5,14)(6,15)(7,16)(8,13), (2,7)(4,5)(10,14)(12,16), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16), (1,6)(2,7)(3,8)(4,5)(9,13)(10,14)(11,15)(12,16), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,9)(2,14)(3,15)(4,12)(5,16)(6,13)(7,10)(8,11)>;
G:=Group( (1,8)(2,14)(3,6)(4,16)(5,12)(7,10)(9,15)(11,13), (1,11)(2,12)(3,9)(4,10)(5,14)(6,15)(7,16)(8,13), (2,7)(4,5)(10,14)(12,16), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16), (1,6)(2,7)(3,8)(4,5)(9,13)(10,14)(11,15)(12,16), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,9)(2,14)(3,15)(4,12)(5,16)(6,13)(7,10)(8,11) );
G=PermutationGroup([[(1,8),(2,14),(3,6),(4,16),(5,12),(7,10),(9,15),(11,13)], [(1,11),(2,12),(3,9),(4,10),(5,14),(6,15),(7,16),(8,13)], [(2,7),(4,5),(10,14),(12,16)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16)], [(1,6),(2,7),(3,8),(4,5),(9,13),(10,14),(11,15),(12,16)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)], [(1,9),(2,14),(3,15),(4,12),(5,16),(6,13),(7,10),(8,11)]])
G:=TransitiveGroup(16,247);
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 2J | ··· | 2O | 4A | ··· | 4J | 4K | ··· | 4P |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | D4 | D4 | D4 | C4○D4 | C2≀C22 |
kernel | C25.C22 | C23.9D4 | C24⋊3C4 | C2×C23⋊C4 | C22.11C24 | C2×C22≀C2 | C22≀C2 | C22×C4 | C2×D4 | C24 | C23 | C2 |
# reps | 1 | 2 | 2 | 1 | 1 | 1 | 8 | 5 | 2 | 1 | 4 | 4 |
Matrix representation of C25.C22 ►in GL6(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
3 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[3,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0],[0,4,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4] >;
C25.C22 in GAP, Magma, Sage, TeX
C_2^5.C_2^2
% in TeX
G:=Group("C2^5.C2^2");
// GroupNames label
G:=SmallGroup(128,621);
// by ID
G=gap.SmallGroup(128,621);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,288,422,521,2804,1411,1027]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=e^2=g^2=1,f^2=d,f*a*f^-1=a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,g*a*g=a*c*e,b*c=c*b,b*d=d*b,g*b*g=b*e=e*b,b*f=f*b,c*d=d*c,f*c*f^-1=c*e=e*c,c*g=g*c,g*d*g=d*e=e*d,d*f=f*d,e*f=f*e,e*g=g*e,g*f*g=c*e*f>;
// generators/relations